Improving sharp Sobolev type inequalities by optimal remainder gradient norms
نویسندگان
چکیده
منابع مشابه
Sharp Logarithmic Sobolev Inequalities on Gradient Solitons and Applications
We show that gradient shrinking, expanding or steady Ricci solitons have potentials leading to suitable reference probability measures on the manifold. For shrinking solitons, as well as expanding soltions with nonnegative Ricci curvature, these reference measures satisfy sharp logarithmic Sobolev inequalities with lower bounds characterized by the geometry of the manifold. The geometric invari...
متن کاملSHARP AFFINE Lp SOBOLEV INEQUALITIES
In this paper we prove a sharp affine Lp Sobolev inequality for functions on R. The new inequality is significantly stronger than (and directly implies) the classical sharp Lp Sobolev inequality of Aubin [A2] and Talenti [T], even though it uses only the vector space structure and standard Lebesgue measure on R. For the new inequality, no inner product, norm, or conformal structure is needed at...
متن کاملSharp Sobolev inequalities involving boundary terms
Let (M, g) be a compact Riemannian manifold of dimension n (n ≥ 3) with smooth boundary. In [LZ], we established some sharp trace inequality on (M, g). In this paper we establish some sharp Sobolev inequalities using the method in [LZ]. For n ≥ 3, it was shown by Aubin [Au1] and Talenti [T] that, for p = 2n/(n − 2), 1 S 1 = inf R n |∇u| 2 R n |u| p 2/p u ∈ L p (R n) \ {0}, ∇u ∈ L 2 (R n) , (0.1...
متن کاملSome general forms of sharp Sobolev inequalities
In this paper, we establish some general forms of sharp Sobolev inequalities on the upper half space or any compact Riemannian manifold with smooth boundary. These forms extend some previous results due to Escobar [11], Li and Zhu [18].
متن کاملCritical dimensions and higher order Sobolev inequalities with remainder terms ∗
Pucci and Serrin [21] conjecture that certain space dimensions behave “critically” in a semilinear polyharmonic eigenvalue problem. Up to now only a considerably weakened version of this conjecture could be shown. We prove that exactly in these dimensions an embedding inequality for higher order Sobolev spaces on bounded domains with an optimal embedding constant may be improved by adding a “li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Analysis
سال: 2011
ISSN: 1534-0392
DOI: 10.3934/cpaa.2012.11.1385