Improving sharp Sobolev type inequalities by optimal remainder gradient norms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Logarithmic Sobolev Inequalities on Gradient Solitons and Applications

We show that gradient shrinking, expanding or steady Ricci solitons have potentials leading to suitable reference probability measures on the manifold. For shrinking solitons, as well as expanding soltions with nonnegative Ricci curvature, these reference measures satisfy sharp logarithmic Sobolev inequalities with lower bounds characterized by the geometry of the manifold. The geometric invari...

متن کامل

SHARP AFFINE Lp SOBOLEV INEQUALITIES

In this paper we prove a sharp affine Lp Sobolev inequality for functions on R. The new inequality is significantly stronger than (and directly implies) the classical sharp Lp Sobolev inequality of Aubin [A2] and Talenti [T], even though it uses only the vector space structure and standard Lebesgue measure on R. For the new inequality, no inner product, norm, or conformal structure is needed at...

متن کامل

Sharp Sobolev inequalities involving boundary terms

Let (M, g) be a compact Riemannian manifold of dimension n (n ≥ 3) with smooth boundary. In [LZ], we established some sharp trace inequality on (M, g). In this paper we establish some sharp Sobolev inequalities using the method in [LZ]. For n ≥ 3, it was shown by Aubin [Au1] and Talenti [T] that, for p = 2n/(n − 2), 1 S 1 = inf R n |∇u| 2 R n |u| p 2/p u ∈ L p (R n) \ {0}, ∇u ∈ L 2 (R n) , (0.1...

متن کامل

Some general forms of sharp Sobolev inequalities

In this paper, we establish some general forms of sharp Sobolev inequalities on the upper half space or any compact Riemannian manifold with smooth boundary. These forms extend some previous results due to Escobar [11], Li and Zhu [18].

متن کامل

Critical dimensions and higher order Sobolev inequalities with remainder terms ∗

Pucci and Serrin [21] conjecture that certain space dimensions behave “critically” in a semilinear polyharmonic eigenvalue problem. Up to now only a considerably weakened version of this conjecture could be shown. We prove that exactly in these dimensions an embedding inequality for higher order Sobolev spaces on bounded domains with an optimal embedding constant may be improved by adding a “li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Analysis

سال: 2011

ISSN: 1534-0392

DOI: 10.3934/cpaa.2012.11.1385